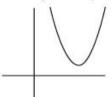

Parabolas

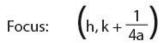
A parabola is the set of all points that are eqidistant from a given point (focus) and a given line (directrix).



Other important aspects associated with parabolas:



They can be modeled by the equation : $y = a(x - h)^2 + k$


if a > 0, Graph opens UP

if a < 0, Graph opens DOWN

Vertex: (h, k)

Axis of symmetry: x = h

Directrix:
$$y = k - \frac{1}{4a}$$

Length of latus rectum = $\left|\frac{1}{a}\right|$

Or they can be modeled by the equation: $x = a(y - k)^2 + h$

if a > 0, Graph opens RIGHT

if a < 0, Graph opens LEFT

Vertex: (h, k)

Focus:
$$\left(h + \frac{1}{4a}, k\right)$$

Axis of symmetry: y = k

Directrix:
$$y = h - \frac{1}{4a}$$

Length of latus rectum = $\left| \frac{1}{a} \right|$

Ex: Find the vertex and focus of the parabola: $y = 3(x - 6)^2 + 4$

a = 3, h = 6, k = 4
$$\rightarrow$$
 Vertex = (6, 4) Focus = $\left(6, 4 + \frac{1}{4(3)}\right) = \left(6, 4 + \frac{1}{12}\right) = \left(6, \frac{49}{12}\right)$

Ex: Find the equation of the directrix and the length of the latus rectum for the parabola $x = \frac{1}{2}y^2 - 2$

$$a = \frac{1}{2}$$
, $h = -2$, $k = 0$ \Rightarrow directrix = $y = -2 - \frac{1}{4 \cdot \frac{1}{2}} = -2 - \frac{1}{2} = -\frac{5}{2}$, latus rectum = $\left| \frac{1}{1/2} \right| = 2$